
Limnol. Oceanogr.: Methods 17, 2019, 377–394
© 2019 The Authors. Limnology and Oceanography: Methods published by

Wiley Periodicals, Inc. on behalf of Association for the Sciences of
Limnology and Oceanography.

doi: 10.1002/lom3.10320

A blended inherent optical property algorithm for global satellite
ocean color observations

Wei Shi ,1,2* Menghua Wang 1

1Center for Satellite Applications and Research, National Environmental Satellite, Data, and Information Service, National
Oceanic and Atmospheric Administration, College Park, Maryland

2Cooperative Institute for Research in the Atmosphere at Colorado State University, Fort Collins, Colorado

Abstract
Water inherent optical properties (IOPs) can be derived from satellite-measured normalized water-leaving radiance

(nLw(λ)) spectra. In this study, we evaluate the performance of the quasi-analytical algorithm (QAA) and the near-
infrared (NIR)-based IOP algorithm using a Hydrolight simulation data set covering a wide range of water types that
span from clear open ocean to turbid coastal/inland waters. The NIR-based algorithm produces significantly improved
IOP retrievals over turbid coastal and inland waters, while the QAA algorithm performs well in the open ocean and less
turbid coastal waters. Based on the advantages of the NIR-based and QAA-based algorithms, a combination of the NIR-
and QAA-based algorithm has been proposed using satellite-measured nLw(745) as the threshold in order to produce
accurate IOP products for both the open ocean and turbid coastal/inlandwaters. The new combined IOP algorithm can
produce reasonably accurate IOP data for all water types, and can be easily implemented into the satellite ocean color
data processing. The La Plata River Estuary region is used as an example to show the difference in performance of IOP
retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS) measurements between 2012 and 2017 with the
NIR-based, QAA-based, and NIR-QAA combined IOP algorithms. We also demonstrate that the NIR-QAA combined
algorithm can be applied to VIIRS global ocean color observations to derive good quality IOP products in China’s east
coastal region, theUS east coastal region, and the region ofMississippi River Estuary and tributaries.

Water inherent optical properties (IOPs) are the absorption
and scattering of pure water, phytoplankton, color dissolved
organic matter (CDOM), minerals, and so on. The normalized
water-leaving radiance spectra (nLw(λ)) from the satellite ocean
color observations are determined by IOPs (Gordon et al. 1988).
Correspondingly, IOPs can also be inferred from the nLw(λ) spec-
tra from satellite remote sensing. Retrievals of the water IOPs
such as absorption coefficients of the phytoplankton, CDOM,
and backscattering coefficients of the phytoplankton and non-
algal particles from the satellite ocean color remote sensing for
both open oceans and the coastal waters are important to moni-
toring and assessing marine environments and natural hazards
such as the biological impact of hurricanes and blooms of harm-
ful algae. Satellite-derived water IOPs allow the study of the
ocean’s physical, optical, biological, and biogeochemical pro-
cesses and their interactions, and permit an evaluation of the
ocean’s biological and biogeochemical responses to long-term
global climate change.

Most of the current global satellite IOP algorithms for appli-
cation in ocean color satellites such as the Sea-viewing Wide
Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) on the Terra and Aqua, and
the Visible Infrared Imaging Radiometer Suite (VIIRS) on the
Suomi national polar-orbiting partnership (SNPP) and NOAA-
20 are based on the study of Gordon et al. (1988), which
shows that a semi-analytical radiance model can be used to
predict the upwelling spectral radiance in visible wavelengths
with various materials in the water such as phytoplankton pig-
ment concentration, dissolved organic and detrital matter,
and so on. Specifically, the remote-sensing reflectance just
beneath the ocean surface rrs(λ) can be written as

rrs λð Þ= g1
bb λð Þ

at λð Þ+ bb λð Þ
� �

+ g2
bb λð Þ

at λð Þ+ bb λð Þ
� �2

ð1Þ

where g1 and g2 are 0.0949 and 0.0794 sr−1 (Gordon et al.
1988). Coefficients g1 and g2 are also tuned and set to be 0.089
and 0.125 sr−1 for IOP retrievals with the quasi-analytical algo-
rithm (QAA) (Lee et al. 2002). at(λ) and bb(λ) are total absorp-
tion and backscattering coefficients, respectively. rrs(λ) can
be computed from the remote-sensing reflectance above the
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surface Rrs(λ) or the normalized water-leaving radiance nLw(λ)
(Morel and Gentili 1996; Gordon 2005; Wang 2006). The total
absorption coefficient at(λ) is the sum of the absorption coeffi-
cients from pure seawater aw(λ), phytoplankton aph(λ), dis-
solved matter ag(λ), and nonalgal particles ad(λ). Coefficient
bb(λ) is the sum of backscattering coefficients for pure seawater
bbw(λ) and particulate matter bbp(λ).

Specifically, the Garver-Siegel-Maritorena (GSM) IOP algo-
rithm (Garver and Siegel 1997; Maritorena et al. 2002) fixes
the absorption for dissolved and detrital matter (adg(λ)) slope
S to be 0.0206 nm−1, and bbp(λ) power law exponential slope η

to be 1.0037 in order to apply a nonlinear least-square tech-
nique to fit Rrs(λ) at the four or five wavelengths of the satellite
ocean color sensors. On the other hand, the QAA algorithm
(Lee et al. 2002) starts with the computation of at(λ0) at a
green/red wavelength using the empirical formula in Morel
and Maritorena (2001). Coefficient bb(λ0) is then calculated
algebraically from rrs(λ) (Gordon et al. 1988; Hoge and Lyon
1996; Lee et al. 2002). The bbp(λ) power law exponential slope
η is estimated from rrs(λ) at the blue and green bands with an
empirical formula (Lee et al. 2002). Decomposition of at(λ)
into aph(λ) and adg(λ) is carried out with the empirical formula
using at(410), at(443), and rrs(λ) at the blue and green bands
(Lee et al. 2002). The generalized IOP (GIOP) algorithm
(Werdell et al. 2013) is focused on the development of the
GIOP model for the construction of different semi-analytical
algorithms; thus, users can test different combinations of IOP
models. It permits isolation and evaluation of specific model-
ing assumptions, construction of semi-analytical algorithms,
and development of a regionally tuned IOP algorithm. The
default configuration for bbp(λ) in GIOP is the same as in the
QAA algorithm (Lee et al. 2002). Following the configuration
of the GIOP algorithm, the retrievals of bbp(λ), aph(λ), and
adg(λ) can be calculated via the linear or nonlinear least-square
inversions of Eq. 1 using the rrs(λ) spectra.

It is noted that there are some restrictions for all three IOP
algorithms. GSM is generally only valid in the open ocean with a
bbp(443) range that is less than ~ 1.0m−1, and an adg(λ) that is less
than ~ 2.0 m−1 (Garver and Siegel 1997; IOCCG 2006). QAA and
GIOP algorithms are only applicable to the open ocean and less-
turbid coastal waters because both of these algorithms only use
the rrs(λ) in the blue and green/red bands to estimate the bbp(λ0)
and bbp(λ) power law exponential slope η with the empirical for-
mulas (Lee et al. 2002; Werdell et al. 2013). In turbid and highly
turbid waters, studies have shown that rrs(λ) loses its sensitivity
with the change of suspended particles in the visible wavelengths
(Shi and Wang 2009a, 2014; Shen et al. 2010a). Thus, it is neces-
sary to retrieve ocean biological and biogeochemical properties
such as chlorophyll a (Chl a) concentration, water turbidity,
total suspended matter (TSM), and so on, with the satellite mea-
surements in the near-infrared (NIR) wavelengths (Gitelson et al.
2007; Dogliotti et al. 2015; Shi et al. 2018).

Most of satellite ocean color products are derived from nLw(λ)
spectra in the visible wavelengths. Unlike open oceans, coastal and

inland water regions, particularly highly turbid regions like river
estuaries, are dominatedwith inorganicmaterials such as clays, silts,
and fine sands from the bottomor from the river flows (Bowers and
Binding 2006). Suspended particles in coastal and estuarine waters
are commonly in the form of aggregates or flocs (Eisma et al. 1990).
For the open ocean, satellite-measured nLw(λ) spectra can be gener-
ally retrieved with uncertainty of ~ 5% at the blue band; therefore,
Chl a uncertainty is within ~ 30% (Mcclain et al. 2004; Mcclain
2009). However, there are still some challenges in coastal regions,
especially for highly turbid coastal and inland water regions.
Such challenges include deriving accurate nLw(λ) spectra,
i.e., atmospheric correction (Gordon andWang 1994; Wang 2007;
IOCCG 2010), Chl a concentration (O’Reilly et al. 1998; Hu et al.
2012; Wang and Son 2016), Kd(490) (Wang et al. 2009), and the
ocean’s IOPs (Garver and Siegel 1997; Lee et al. 2002; Werdell et al.
2013). These challenges make it difficult to characterize and assess
the physical, biological, and biogeochemical changes with satellite
ocean color observations in coastal and inlandwater regions.

The normalized water-leaving radiance nLw(λ) spectra in the
red, NIR, and shortwave infrared (SWIR) wavelengths can only be
rarely used in the openocean to derive ocean’s biological and bio-
geochemical products. However, coastal and inland waters are
generally featured with enhanced nLw(λ) at the NIR and SWIR
wavelengths. As an example, the NIR ocean reflectance spectral
shape represented by the ratio of nLw(λ) at the two NIR bands is
highly dynamic and region-dependent (Doron et al. 2011; Shi
andWang 2014). The NIR spectral reflectance feature in the estu-
ary of the Yellow River and Ancient Yellow River is found to be
notably different from that of the Yangtze River (Shi and Wang
2014). This makes the satellite ocean color measurements at the
red, NIR, and SWIR bands extremely valuable in conducting
atmospheric correction (Gordon and Wang 1994; Wang 2007;
Wang and Shi 2007), which characterizes and quantifies water
properties in coastal and inland waters such as Chl a concentra-
tion (Gitelson et al. 2007), floating green algae blooms (Hu 2009;
Shi and Wang 2009b), river plumes (Shi and Wang 2009c), TSM
(Miller and Mckee 2004; Shen et al. 2010b; Son andWang 2012;
Shi et al. 2018), and the light diffuse attenuation coefficient at
490 nm (Wang et al. 2009; Zhang et al. 2012). It is also found that
the spectral features of nLw(λ) at the red and NIR wavelengths are
dynamic and regional dependent (Ruddick et al. 2006; Doron
et al. 2011; Shi and Wang 2014). This can be attributed to the
TSM concentrations, suspended particle shapes, size distribu-
tions, and compositions of the suspended particles (Stramski
et al. 2007; Kostadinov et al. 2009; Shi andWang 2017).

Based on the fact that, in coastal and inland waters, the
absorption coefficient of seawater aw(λ) is the dominant constitu-
ent of at(λ) at the NIR wavelengths; the semi-analytical radiance
model as shown in Eq. 1 can be significantly simplified, thereby
bb(λ) at the NIR wavelengths can be analytically calculated. Con-
sequently, bbp(λ) in the visible wavelengths can be derived from
bbp(λ) retrievals at the NIR wavelengths (Shi and Wang 2017).
Hydrolight simulations show that bbp(λ) retrievals are accurate
and robust for a wide range of bothmoderately and highly turbid
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waters in comparison to the Hydrolight input bbp(λ). In addition,
Shi and Wang (2017) demonstrated that the NIR-based bbp(λ)
algorithm can be applied to VIIRS-SNPP observations to produce
bbp(λ) products in the global highly turbid waters such as the
Bohai Sea and Yellow Sea in China’s east coastal region, Amazon
River Estuary, and Mississippi River Estuary and tributaries (Shi
andWang 2017).

In this study, we further extend our research to exploit VIIRS-
derived nLw(λ) at the visible and NIR bands using the NIR-SWIR
combined atmospheric correction algorithm (Wang and Shi
2007) with VIIRS-SNPP observations between 2012 and 2017 to
compute the total absorption coefficient at(λ), color dissolved
and detrital absorption coeffificent adg(λ), and phytoplankton
absorption coefficent aph(λ) for the global ocean. A scheme is pro-
posed to combine these NIR-based and QAA-based IOP algo-
rithms in order to produce global IOP products from VIIRS-SNPP
observations. The advantage of this scheme is first evaluatedwith
Hydrolight simulation data. We demonstrate that this combined
IOP algorithm can significantly improve IOP products in coastal
and inland waters, and produce high-quality IOP products for
both clear open oceans and turbid coastal/inlandwaters.

Methods
The data set of IOP and nLw(λ) spectra from Hydrolight
simulations

Due to the insufficient amount of in situ IOP data and nLw(λ)
measurements covering a wide range of IOPs for both the open
ocean and turbid coastal/inland water regions, Hydrolight simula-
tions (Mobley et al. 1993; Mobley and Sundman 2013) were con-
ducted to create the data set of IOPs and nLw(λ) spectra for a variety
of water types. The Hydrolight radiative transfer model computes
radiance distributions and related quantities (e.g., irradiances,
reflectance, diffuse attenuation functions, etc.) in various water
types using the absorption and backscattering of various constitu-
ents in the water, for given bottom depth, IOP property profiles,
and atmosphere condition (Mobley et al. 1993).

To generate a representative IOPs and nLw(λ) spectra data set
for the global ocean, IOPs from the International Ocean Colour
Coordinating Group (IOCCG) synthesized data set for IOP algo-
rithm development in IOCCG Report 5 (IOCCG 2006) were used
as the baseline IOPs for theHydrolight simulations. The IOPs and
corresponding apparent optical properties (AOPs) can generally
be used to develop, test, evaluate, and compare the IOP and AOP
algorithms for satellite ocean color remote sensing. This data set
contains 500 records of respective phytoplankton absorptions
aph(λ), dissolved matter absorptions ag(λ), nonalgal detrital
absorptions ad(λ), and particle backscattering coefficients bbp(λ)
at the wavelength interval of 10 nm between 400 and 800 nm in
addition to the corresponding Rrs(λ) spectra. However, the data
set only covers the water types in the open ocean and less turbid
coastal waters.

In order to develop an IOP algorithm for all water types,
i.e., clear open oceanwaters, less turbid and turbid coastal waters,

estuarine, and inland waters, we further expanded the IOCCG
simulated data set. Since turbid coastal waters feature enhanced
particle backscattering coefficients bbp(λ), phytoplankton absorp-
tion coefficients aph(λ), and dissolved and detrital matter absorp-
tions adg(λ), the last 25 records of IOPs in the IOCCG data set are
chosen first. These 25 records have the highest values in bbp(λ),
ad(λ), ag(λ), and aph(λ) in the data set. With the assumption that
nonalgal detrital backscattering bbd(λ) and ad(λ) are proportional
to the detritus/mineral concentrations, and ag(λ) and aph(λ) are
proportional to the concentrations of the corresponding constit-
uents, we boost detritus/mineral concentrations, ag(λ) and aph(λ),
by factors of 1, 2, 5, and 10 times. Thus, the total number of the
possible IOP combinations can be as high 25 × 4 × 4 × 4 = 1600.
Of the possible records of IOP data set, we randomly select a cer-
tain number of the records as the Hydrolight inputs to generate
nLw(λ) spectra for the coastal and inland waters. These enhanced
bbp(λ), adg(λ), and aph(λ) as well as the corresponding nLw(λ) spec-
tra are randomly selected as the new IOP and nLw(λ) records for
turbid coastal and inlandwaters.

In addition to the new IOP data records, we also ran Hydro-
light simulations for the 500 records of IOPs in the synthesized
data set from IOCCG Report 5 in order to produce nLw(λ) spectra
at the VIIRS-SNPP bands of 410, 443, 486, 551, 671, 745, and
862 nm because the NIR nLw(862) is not covered in the IOCCG
synthesized data set (IOCCG 2006). It has been verified that
nLw(λ) spectra from the Hydrolight simulations are consistent
with those in the IOCCG synthesized data set.

Hydrolight simulations can be used to build realistic records of
enhanced IOPs and the corresponding nLw(λ) spectra in turbid
waters with this scheme. Thus, the 500 records of IOPs and
Hydrolight-simulated nLw(λ) spectra at the VIIRS wavelengths are
combined with those of the enhanced bbp(λ), adg(λ), and aph(λ)
along with the corresponding Hydrolight-simulated nLw(λ) spec-
tra at the VIIRS bands, building a comprehensive data record of
IOPs and nLw(λ) spectra. The new data set covers a variety of
water types such as clear open ocean, less-turbid, turbid, and
highly turbid coastal and inland waters. Therefore, this new
data set can be used to evaluate the performance of various IOP
algorithms, and develop a new IOP algorithm for producing good
quality IOP products fromVIIRS observations.

VIIRS-derived nLw(λ) spectra from the NIR-SWIR based
ocean color data processing

VIIRS is one of the major sensors onboard the SNPP satellite,
which was launched on 28 October 2011. It has 22 spectral
bands, including 14 reflective solar bands, 7 thermal emissive
bands, and a panchromatic day/night band. The spectral band
specifications are similar to MODIS in order to observe Earth’s
atmosphere, land, and ocean properties (Goldberg et al. 2013).
Ocean color environmental data records are one of the key prod-
uct suites derived fromVIIRS (Wang et al. 2013, 2016).

VIIRS-SNPP has five visible bands (M1–M5) with nominal
central wavelengths at 410, 443, 486, 551, and 671 nm, two
NIR bands (M6 and M7) at wavelengths of 745 and 862 nm,
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and three SWIR bands (M8, M10, and M11) at wavelengths of
1238, 1601, and 2257 nm for satellite ocean color data
processing. The spatial resolution of these spectral bands is
750 m. In addition, there are imaging bands (I-bands) with
spatial resolution of 375 m. In particular, VIIRS I1 band at
638 nm is useful for various coastal and inland water applica-
tions (Wang and Jiang 2018). For satellite ocean color data
processing, we also carried out the on-orbit vicarious calibra-
tion for VIIRS using the in situ nLw(λ) spectra from the Marine
Optical Buoy (MOBY) (Clark et al. 1997) located in the waters
off Hawaii (Wang et al. 2016).

To derive nLw(λ) spectra from satellite observations, one funda-
mental assumption for atmospheric correction is the black ocean
assumption at the NIR and SWIR wavelengths for the specific
water types. For the open ocean, atmospheric correction can be
carried out using the two VIIRS NIR bands (745 and 862 nm) to
derivenLw(λ) spectra (Gordon andWang 1994), and consequently,
ocean biological and biogeochemical property data can be
obtained using nLw(λ) spectra. For turbid coastal and inlandwaters,
however, nLw(λ) spectra from the visible to NIR wavelengths can
be derived using the SWIR-based atmospheric correction algo-
rithm (Wang 2007; Wang and Shi 2007) because the black ocean
assumption is generally true for the SWIR bands (Shi and Wang
2009a), e.g., at theVIIRS SWIR bands of 1238, 1601, and 2257 nm.

VIIRS ocean color products are produced with the official
NOAA VIIRS ocean color data processing system, i.e., the mul-
tisensor level-1 to level-2 (MSL12) (Wang et al. 2013, 2014). A
method of ocean color data processing using the combined NIR
and SWIR bands for atmospheric correction for satellite ocean
color data processing (Wang and Shi 2007) was implemented in
the MSL12 ocean color data processing system. With the NIR-
SWIR combined atmospheric correction algorithm, ocean color
data can be processed using the standard (NIR) atmospheric cor-
rection algorithm for the open ocean (Gordon and Wang 1994),
whereas for the turbid coastal and inland waters, the SWIR atmo-
spheric correction algorithm (Wang 2007) can be executed. The
combined NIR-SWIR algorithm has been used to routinely pro-
duce global nLw(λ) spectra for VIIRS satellite ocean color data
processing. In this study, nLw(λ) spectra derived from the NIR-
SWIR atmospheric correction algorithm are used to evaluate and
demonstrate IOP products with different IOP algorithms for a
variety of ocean regions such as China’s east coastal region, the
La Plata River Estuary, and theMississippi River Estuary region.

The QAA-based and NIR-based IOP algorithms
The QAA IOP algorithm was developed to derive the IOPs for

optically deep waters (Lee et al. 2002). Briefly, the QAA algorithm
includes two steps. The first step is to derive the total absorption
coefficients at(λ) and particle backscattering coefficients bbp(λ).
An empirical formula is used to compute at(λ) at the green/red
wavelengths from Rrs(λ) in the visible bands (Morel and
Maritorena 2001). It is then applied to the water-leaving reflec-
tance model to calculate bbp(λ0) at the green/red wavelengths.
The power law exponential slope η is also empirically estimated

from Rrs(λ) in the visible bands. With bbp(λ0) at the green/red
wavelengths and the power law exponential slopes η, bbp(λ) spec-
tra are consequently derived, and they are applied to the remote-
sensing reflectancemodel to derive at(λ) spectra.

The purpose of the second step in the QAA algorithm is to
decompose at(λ) into the dissolved and detrital absorption
coefficient, adg(λ), and the phytoplankton absorption coeffi-
cient, aph(λ). In this step, the spectral ratio of aph(410)/
aph(443) is first estimated, and next the spectral slope S of
adg(λ) is calculated. These two parameters are both based on
the empirical formulas from the in situ observations. With the
known aph(410)/aph(443), S, at(410), and at(443) from step
1, adg(443) and aph(443) can be computed accordingly. Using
adg(443) and spectral slope S of adg(λ), adg(λ) spectra can be derived.
Thus, aph(λ) is consequently computed after deducting adg(λ) and
aw(λ) from at(λ).

In comparison to the QAA IOP algorithm, Shi and Wang
(2014, 2017) show that bbp(λ) can be computed analytically in
turbid coastal and inland waters with the NIR-based bbp(λ)
algorithm from VIIRS-SNPP observations. Briefly, the pure sea-
water absorption coefficients aw(λ) at the NIR bands are typi-
cally significantly higher than those from other constituents,
i.e., aw(λ) >> aph(λ), ag(λ), and ad(λ). For example, aw(862) is
~ 5 m−1, while aph(λ), ag(λ), and ad(λ) at the NIR 862 nm are
normally negligible compared to aw(862). Therefore, with the
spectral features of aw(λ), aph(λ), ag(λ), and ad(λ) at the VIIRS
NIR 745 and 862 nm bands, bb(λ)/(a(λ) + bb(λ)) can be approxi-
mated as

bb λð Þ
a λð Þ+ bb λð Þ

� �
≈

bb λð Þ
aw λð Þ+ bb λð Þ

� �
: ð2Þ

The NIR-based bbp(λ) algorithm is robust, and can be used to
derive bbp(λ) for turbid waters when nLw(745) and nLw(862) are
less than ~ 6 mW cm−2 μm−1 sr−1 and ~ 4 mW cm−2 μm−1 sr−1

(Shi and Wang 2017), respectively. After deriving bbp(λ) in the
turbid waters, at(λ) spectra can be computed with the IOP-
reflectance model as shown in Eq. 1. Following the same
approach in the QAA algorithm, at(λ) can be further decomposed
into the dissolved and detrital absorption coefficient adg(λ) and
phytoplankton absorption coefficient aph(λ) in turbid waters.
Table 1 summarizes differences between the NIR-based andQAA-
based IOP algorithms.

In this study, we evaluate and compare the performance of the
NIR-based and QAA-based IOP retrievals using the new
Hydrolight-generated comprehensive data set of IOPs and the
corresponding nLw(λ) spectra. Since this data set covers various
water types from clear open ocean waters, coastal less-turbid
waters, and coastal, estuarine, and inland turbid and highly turbid
waters, this evaluation can help to understand the performance of
these two IOP algorithms when they are used to produce IOP
products fromVIIRS global ocean color observations.

In addition, a previous study revealed the advantages and
disadvantages of the QAA-based and NIR-based bbp(λ)
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algorithms (Shi and Wang 2017). These two bbp(λ) algorithms
actually can be complementary with each other. Thus, a com-
bined NIR- and QAA-based bbp(λ) algorithm was proposed and
demonstrated an improvement of global bbp(λ) for both open
oceans and coastal turbid waters (Shi and Wang 2017). In this
study, we further explore the possibility for a combined algo-
rithm for all IOP products including aph(λ), adg(λ), and at(λ) in
order to produce high-quality IOP products from VIIRS global
ocean observations. Specifically, the IOP products derived
from the combined NIR- and QAA-based algorithm will be
demonstrated in various regions.

Development of the combined IOP algorithm with the
Hydrolight simulation data set

The new comprehensive Hydrolight simulation data set is
used to evaluate the performance of the NIR-based, QAA-based,
and NIR-QAA combined IOP algorithms. The total number of
records for IOPs and nLw(λ) is 664. Figure 1 shows the compari-
sons of the NIR-derived bbp(λ) vs. known bbp(λ) (Fig. 1a), the NIR-
derived aph(λ) vs. known aph(λ) (Fig. 1b), the NIR-derived adg(λ)
vs. known adg(λ) (Fig. 1c), and the NIR-derived at(λ) vs. known
at(λ) (Fig. 1d). High uncertainties of the NIR-based bbp(λ) (Fig. 1a)
and at(λ) (Fig. 1d) occur for the clear open ocean waters with
known bbp(λ) < 0.02–0.03 m−1 and at(λ) < 0.1 m−1, respectively.
This is attributed to the extremely low nLw(λ) at the VIIRS NIR
bands for the open ocean waters. On the other hand, the NIR-
based IOP algorithm for bbp(λ) and at(λ) shows high level of accu-
racy for high bbp(λ) and at(λ) values as shown in Fig. 1a,d.

Figure 1b,c shows that the uncertainties of adg(λ) and aph(λ)
are high for low adg(λ) and aph(λ), while the performance of
the NIR-based adg(λ) and aph(λ) in coastal turbid waters with
high adg(λ) and aph(λ) values is reasonably good. This demon-
strates that the NIR-based IOP algorithm for bbp(λ), at(λ), adg(λ),
and aph(λ) can be used to derive IOPs for coastal turbid waters
with good accuracy, but it may lead to significant biases and
uncertainties in clear open ocean waters.

Figure 2 shows the performance of the bbp(λ) (Fig. 2a),
aph(λ) (Fig. 2b), adg(λ) (Fig. 2c), and at(λ) (Fig. 2d) derived from

nLw(λ) spectra with the QAA IOP algorithm in comparison to
the Hydrolight IOP inputs. Figure 2a shows that the QAA-
based bbp(λ) performs well for bbp(λ) < 0.1 m−1. However, the
QAA-based bbp(λ) is significantly underestimated for bbp(λ)
approximately greater than 0.2–0.3 m−1

.

The uncertainty results in Figs. 1, 2 are consistent with the
findings in Lee et al. (2010). Figure 1 indeed shows that uncer-
tainties of aph(λ) are larger than those of adg(λ) when aph(λ) and
adg(λ) are similar, even though at(λ) retrievals agree well with at(λ)
input in the range of at(λ) approximately greater than 0.5 m−1.
Figure 2 also shows that at(λ) retrievals in the blue-green wave-
lengths are generally within ~ 10% for 500 records of the IOCCG
data set. It shows that uncertainties of aph(λ) are larger than those
of adg(λ) for 500 records of the IOCCGdata set.

Similarly, at(λ) retrievals are generally consistent with the
input at(λ) < 1.0 m−1 (Fig. 2d), but significant underestimations
can be found with increasing at(λ). It performs better than aph(λ)
and adg(λ), but notable uncertainties and biases still exist espe-
cially in the range of at(λ) approximately greater than 1.0 m−1.
The QAA aph(λ) retrievals (Fig. 2b) show that the QAA algorithm
performed better with low aph(λ) than those with high aph(λ)
(Fig. 2b). In fact, Fig. 2 shows that the QAA-derived aph(λ) tends
to be underestimated when aph(λ) is greater than 0.5 m−1. Simi-
larly, adg(λ) retrievals are also underestimated when adg(λ)
greater than 3m−1 (Fig. 2c). In fact, the simulation performance
evaluation for the QAA IOP algorithm shows that the QAA-
based IOP algorithm is not suitable for turbid coastal waters,
which normally feature high values of bbp(λ), at(λ), adg(λ),
and aph(λ).

Some of the different and complementary performances of
the QAA-based and NIR-based IOP algorithms for various
water types as shown in Figs. 1, 2 suggest that a combined IOP
algorithm is necessary in order to produce high-quality IOP
products for both open oceans and turbid coastal/inland
waters. In fact, it has been demonstrated that the approach of
the NIR-SWIR atmospheric correction algorithm can combine
the NIR- and SWIR-based atmospheric correction algorithms
in order to derive high-quality nLw(λ) spectra for the open

Table 1. Comparison between QAA-based and NIR-based IOP algorithms.

Parameter QAA v5 IOP algorithm NIR-based IOP algorithm

Rrs(λ) rrs(λ) conversion rrs(λ) = Rrs(λ)/(0.52 + 1.7Rrs(λ)) Same in QAA

u(λ) = bb(λ)/(a(λ) + bb(λ)) u λð Þ= −g0 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g20 −4g1 r rs λð Þ

p
2g1

g0 = 0:089, g1 = 0:125 u λð Þ= −g0 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g20 −4g1 r rs λð Þ

p
2g1

g0 = 0:0949, g1 = 0:0794

Reference IOP parameter
χ = log r rs 443ð Þ+ r rs 486ð Þ

r rs λ0ð Þ+ 5r rs 671ð Þr rs 671ð Þ
r rs 486ð Þ

� �

a λ0ð Þ= aw λ0ð Þ+ 10−1:146−1:366χ−0:469χ2

bb λ0ð Þ= a λ0ð Þu λ0ð Þ
1−u λ0ð Þ λ0 = 551nm

bb λ0ð Þ≈ aw λ0ð Þu λ0ð Þ
1−u λ0ð Þ λ0 = 745 or 862 nm

bbp(λ) spectral relation bbp λð Þ= bbp λ0ð Þ λ0
λ

� �η
λ0 = 551nm bbp λð Þ= bbp λ0ð Þ λ0

λ

� �η
λ0 = 746or 862nm

bbp(λ) power law slope η=2:0 1−1:2exp −0:9 r rs 443ð Þ
r rs 551ð Þ

� �� �
η= log bbp 862ð Þ

bbp 745ð Þ
� �

= log 745
862

� �
ζ : aph(410)/aph(443) ζ =0:74+ 0:2

0:8 + r rs 443ð Þ=r rs 551ð Þ Same in QAA

ξ : adg(410)/adg(443) ξ = es(443 − 410)

S =0:015 + 0:002
0:6+ r rs 443ð Þ=r rs 551ð Þ

Same in QAA
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ocean and turbid coastal/inland waters (Wang and Shi 2007).
Similarly, a method was proposed for the combined NIR- and
QAA-based bbp(λ) algorithm using nLw(745) as the criteria to
determine which algorithm should be used for producing
VIIRS bbp(λ) data (Shi and Wang 2017).

Following the same strategy, a combined scheme is devel-
oped and proposed to derive all IOPs, i.e., bbp(λ), aph(λ), adg(λ),
and at(λ) in order to produce accurate IOP products for both
open ocean and turbid coastal/inland waters. This scheme can
be easily implemented into the MSL12 ocean color data
processing system. With extensive tests and evaluations, the
specific procedure for the NIR-QAA IOP scheme is outlined
below.

1. For nLw(745) ≤ 0.1 mW cm−2 μm−1 sr−1, Q(λ) = Q(QAA)(λ)
2. For 0.1 < nLw(745) < 0.2 mW cm−2 μm−1 sr−1, Q(λ) =

Q(QAA)(λ) + (10 nLw(745) – 1) × (Q(NIR)(λ) – Q(QAA)(λ))
3. For nLw(745) ≥ 0.2 mW cm−2 μm−1 sr−1, Q(λ) = Q(NIR)(λ),

where Q(QAA)(λ) and Q(NIR)(λ) are the QAA- and NIR-based IOP
algorithms, respectively. It is noted that nLw(λ) spectra can be
easily converted to the remote-sensing reflectance Rrs(λ),
i.e., Rrs(λ) = nLw(λ)/F0(λ), where F0(λ) is the extraterrestrial solar
irradiance.

With the proposed method, optimal IOP retrievals for
bbp(λ), aph(λ), adg(λ), and at(λ) can be achieved. Note that IOP
retrievals from satellite observations are prone to various
uncertainties and noise. For example, it is possible that IOP
retrievals from one IOP algorithm can fail when deriving nega-
tive values. In this case, retrievals from another IOP algorithm
are used for deriving the corresponding IOP values.

The performance of the NIR-QAA combined IOP algorithm
for bbp(λ) (Fig. 3a), aph(λ) (Fig. 3b), adg(λ) (Fig. 3c), and at(λ)
(Fig. 3d) with the comprehensive IOP data set is significantly
improved. The NIR-QAA combined IOP algorithm can derive rea-
sonably high-quality IOPs for all water types. In comparison to
the QAA-based algorithm (Fig. 2), all four IOP parameters show

Fig. 1. Comparison of the NIR-based IOP retrievals with Hydrolight inputs (true values) at VIIRS spectral bands for (a) bbp(λ), (b) aph(λ), (c) adg(λ), and
(d) at(λ).
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significant improvement in the turbid productive waters. On the
other hand, the combined algorithm follows the QAA IOP algo-
rithm and performs well in the clear open ocean. Since these two
IOP algorithms can complement each other, the NIR-QAA com-
bined IOP algorithm can take the advantages of the QAA algo-
rithm in the open ocean and less turbid coastal waters and the
advantages of the NIR-based algorithm in turbid coastal and
inlandwaters.

Furthermore, the statistical evaluation shows that the good
retrievals for all four IOP parameters can be achieved with the
NIR-QAA combined IOP algorithm (Table 2). High-quality
retrievals can be achieved for the IOP products of bbp(λ) and
at(λ) with the corresponding coefficients of determination R2

at 0.952 and 0.936, respectively. Reasonably accurate aph(λ)
and adg(λ) can be achieved with the NIR-QAA combined IOP
algorithm. The R2 values for the aph(λ) and adg(λ) are 0.723
and 0.738, respectively. This shows that retrievals of aph(λ)
and adg(λ) with the NIR-QAA IOP algorithm are less accurate

than those of bbp(λ) and at(λ). Since the Hydrolight IOP
data set covers a wide range of water types, the NIR-QAA com-
bined IOP algorithm can be applied to the global satellite
ocean color observations for deriving the IOP parameters for
both open ocean and turbid coastal/inland waters.

Results
VIIRS-derived IOP products over the La Plata River Estuary

The La Plata River Estuary between Uruguay and Argentina is
one of the most turbid regions in the world (Shi andWang 2010).
To further evaluate the performance of the IOP products from the
QAA-based, NIR-based, and NIR-QAA combined IOP algorithms,
the La Plata River Estuary region is selected to produce the IOP
products from the three algorithms with VIIRS observations.

The different bbp(λ) products from the NIR-based IOP algo-
rithm (Fig. 4a–e), the QAA-based IOP algorithm (Fig. 4f–h), and
the NIR-QAA combined IOP algorithm (Fig. 4i–m) show that

Fig. 2. Comparison of the QAA-based IOP retrievals with Hydrolight inputs (true values) at VIIRS spectral bands for (a) bbp(λ), (b) aph(λ), (c) adg(λ), and
(d) at(λ).

383

Shi and Wang A blended IOP algorithm



high-quality IOP products can be obtained with the NIR-QAA
combined IOP algorithm. In general, QAA-derived bbp(λ) prod-
ucts are smooth and less noisy for the entire region. Note that
there are no bbp(745) and bbp(862) data from the QAA-based
algorithm. Figure 4a–e shows the NIR-based climatology bbp(λ)
in this region. Indeed, bbp(λ) images with the NIR-based
approach in the open ocean show high data noise especially for

bbp(443) (Fig. 4a). Actually, bbp(443) (Fig. 4a), bbp(551) (Fig. 4b),
and bbp(671) (Fig. 4c) are all derived from bbp(745) (Fig. 4d) and
bbp(862) (Fig. 4e) with the NIR-based algorithm. Thus, small
error and noise in nLw(745) and nLw(862) due to atmospheric
correction can lead to significant uncertainties of bbp(λ) in visi-
ble bands in the offshore waters where nLw(745) and nLw(862)
are close to 0. It is also noted that the NIR-based bbp(λ) in

Table 2. Statistics of the NIR-QAA combined IOP retrievals in comparison to Hydrolight inputs.

IOPs Data number Mean ratio Median ratio Ratio RMSD Ratio MAPD R2

bbp(λ) 664 1.001 0.972 0.123 0.078 0.952

aph(λ) 664 1.270 1.310 1.510 1.142 0.723

adg(λ) 664 1.012 0.855 0.486 0.033 0.738

at(λ) 664 1.045 1.007 0.126 0.086 0.936

MAPD, mean absolute percentage deviation; RMSD, root mean square deviation.

Fig. 3. Comparison of the NIR-QAA combined IOP retrievals with Hydrolight inputs (true values) at VIIRS spectral bands for (a) bbp(λ), (b) aph(λ), (c)
adg(λ), and (d) at(λ).
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highly turbid waters (Fig. 4a–f) in the visible bands is ~ 4–5
times higher than those from the corresponding QAA-based
bbp(λ) products (Fig. 4f–h).

The QAA- and NIR-based bbp(λ) results in Fig. 4 clearly demon-
strate the advantages and disadvantages of each IOP algorithm.
TheQAA-based algorithmusually underestimates bbp(λ) and even
loses its sensitivity to bbp(λ) change in moderately to highly tur-
bid waters (Fig. 4f–h), while the NIR-based bbp(λ) retrievals show
high data noise in the offshore waters in comparison with those
from theQAA-based algorithm. This is consistentwith the perfor-
mance assessment using the comprehensive Hydrolight simula-
tion data set as shown in Figs. 1, 2.

Figure 4i–m shows results of the NIR-QAA combined VIIRS cli-
matology bbp(λ) at the bands 443 nm bbp(443) (Fig. 4i), 551 nm
bbp(551) (Fig. 4j), and 671 nm bbp(671) (Fig. 4k), respectively.
Note that theQAA IOP algorithm is specifically developed for IOP
retrievals in the visible bands and not at the NIR bands. Since
there are no QAA bbp(745) and bbp(862) data, bbp(745) (Fig. 4l)
and bbp(862) (Fig. 4m) only show the areas with nLw(745)
≥ 0.2 mW cm−2 μm−1 sr−1 from the NIR-based IOP algorithm. In
comparison with the NIR-based climatology bbp(λ), the NIR-QAA
combined bbp(λ) products show significant improvement in the
offshore region. In the estuarine regions, however, values of the
NIR-QAA combined bbp(λ) become much higher than those from

the QAA approach. Furthermore, no obvious data discontinuities
can be found in the transition zones from the QAA bbp(λ) in the
offshore open ocean to the NIR-based bbp(λ) in turbid coastal
waters. This demonstrates that the proposed approach can pro-
vide the best bbp(λ) data quality for both open ocean and turbid
coastal/inlandwaters.

Phytoplankton absorption coefficient aph(λ) is another IOP
product derived from the VIIRS observations. Figure 5 shows
the VIIRS climatology aph(443), aph(551), and aph(671) data
derived from the NIR-based IOP algorithm (Fig. 5a–c), QAA-
based IOP algorithm (Fig. 5d–f), and NIR-QAA combined IOP
algorithm (Fig. 5g–i). Again, high noise in the NIR-based
aph(443) is obvious in the offshore waters (Fig. 5a). In the La
Plata River Estuary, the QAA-based aph(443) (Fig. 5d) is similar
to those of the NIR-based aph(443) (Fig. 5a). However, the
QAA-based aph(551) (Fig. 5e) and aph(671) (Fig. 5f) are visibly
lower than the corresponding NIR-based aph(551) (Fig. 5b)
and aph(671) (Fig. 5c) in turbid waters. This is also consistent
with the results from Hydrolight simulations in Figs. 1, 2. The
NIR-QAA combined aph(443) (Fig. 5g), aph(551) (Fig. 5h), and
aph(671) (Fig. 5i) show improvements in aph(λ) for both the
offshore open ocean and estuarine turbid water region.

Figure 6 shows the VIIRS climatology adg(443), adg(551), and
adg(671) products derived from the NIR-based IOP algorithm
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Fig. 4. VIIRS-measured climatology bbp(λ) at various VIIRS bands in the La Plata River Estuary derived using the approaches of (a–e) the NIR-based IOP
algorithm, (f–h) the QAA-based IOP algorithm, and (i–m) the NIR-QAA combined IOP algorithm.
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(Fig. 6a–c), QAA-based IOP algorithm (Fig. 6d–f), and NIR-QAA
combined IOP algorithm (Fig. 6g–i). Similar to Figs. 4a–c, 5a–c,
the QAA-derived adg(λ) (Fig. 6d–f) hasmuch less noise than those
from the NIR-based algorithm (Fig. 6a–c) in the open ocean.
However, the QAA-based adg(λ) values in the La Plata River Estu-
ary are much less than those of the NIR-based adg(λ). The QAA-
based and NIR-based adg(λ) in the La Plata River Estuary are con-
sistent with the Hydrolight simulations in Figs. 1, 2, which show
that the QAA-based adg(λ) significantly underestimates adg(λ),
while the NIR-based adg(λ) is close to the sea truth in turbid waters.

On the other hand, high noise in the NIR-based adg(λ) shown
in Fig. 6a–c for the offshore waters is the retrieval artifact due to
the insignificant nLw(λ) at the VIIRS NIR bands as suggested by
the Hydrolight simulations (Fig. 1). In contrast, the QAA-based
adg(λ) in the offshore waters is reliable and accurate. The NIR-
QAA combined adg(λ) images in this region (Fig. 6g–i) show the
high quality of adg(λ) for both the turbid estuarine waters and
the offshore waters. In fact, there are no adg(λ) data gaps from
theNIR-QAA combined algorithm.

Figure 7 shows the VIIRS-SNPP climatology at(443), at(551),
and at(671) products derived from the NIR-based IOP algorithm
(Fig. 7a–c), QAA-based IOP algorithm (Fig. 7d–f), and NIR-QAA
combined IOP algorithm (Fig. 7g–i), respectively. Note that

at(λ) = aph(λ) + adg(λ) + aw(λ), and aw(λ) can play a significant role
in the total absorption coefficient at(λ) at the VIIRS 551 and
671 nm bands especially for the open ocean. The NIR-based at(λ)
indeed shows high noise at(λ) retrievals in the offshore clear
waters in Fig. 7a–c. The Hydrolight simulations for the NIR-based
at(λ) retrievals in Fig. 1d also suggest that at(λ) derived from the
NIR-based IOP algorithm in the offshore open ocean can be erro-
neous. In comparison, the QAA-based at(λ) in the open ocean is
good data quality in terms of both the noise level and data accu-
racy (Fig. 2d).

The QAA-based at(λ) shows low noise for the coastal and
estuarine turbid regions as well as for the open ocean. How-
ever, the QAA-based at(λ) (Fig. 7d–f) in the La Plata River Estu-
ary is significantly lower than the corresponding NIR-based
at(λ) (Fig. 7a–c). As an example, the QAA-based at(551)
(Fig. 7e) in the estuary is generally ~ 0.5 m−1 or less, while the
NIR-based at(551) (Fig. 7b) in the estuary is ~ 2.5 m−1. This is
also consistent with the Hydrolight simulations for turbid
waters shown in Figs. 1d, 2d.

Figure 7g–i shows IOP results from the NIR-QAA combined
at(λ) in the La Plata River Estuary. With the combination of the
QAA-based at(λ) for offshore oceans and NIR-based at(λ) for
coastal and estuarine waters, good quality at(λ) data for the entire
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La Plata River Estuary derived using the approaches of (a–c) the NIR-based
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region are obtained. Specifically, combined at(λ) keeps high-
quality at(λ) from the NIR-based IOP algorithm in the La Plata
River Estuary and high-quality at(λ) from the QAA-based IOP
algorithm in the offshore region. In the La Plata River Estuary,
at(443), at(551), and at(671) can reach ~ 5 m−1, 2.5 m−1, and
1.5 m−1, respectively. Indeed, with the NIR-QAA combined IOP
algorithm, the less noisy andmore accurate at(λ) in offshore open
ocean waters from the QAA IOP algorithm is chosen to produce
high-quality at(λ) for the entire region.

A few studies have been conducted in the La Plata River
Estuary region. The TSM concentration and the turbidity from
the satellite ocean color observations and the in situ measure-
ments (Moreira et al. 2013; Dogliotti et al. 2016) indeed show
significant enhancements in the inner and middle La Plata
River Estuary due to the river discharge and wind-driven sedi-
ment resuspension. The spatial pattern of the TSM concentra-
tion and turbidity in these studies are consistent with the
bbp(λ) pattern in Fig. 4i–m and adg(λ) pattern in Fig. 6g–i. Since
both bbp(λ) and adg(λ) are proportional to the particle concen-
trations in the water column, the consistence between the IOP
products in this study and the measurements of TSM and tur-
bidity qualitatively suggests that the IOP products in the La
Plata River Estuary from the NIR-QAA combined method as
shown in Figs. 4–7 are reasonably accurate.

The NIR-QAA combined IOP products in the other coastal
regions

VIIRS-SNPP IOP products bbp(λ), aph(λ), adg(λ), and at(λ)
derived from the QAA-based algorithm, NIR-based algorithm,
and NIR-QAA combined algorithm in the La Plata Estuary
region have different performances as shown in Figs. 4–7.
Results show that the NIR-QAA blended IOP algorithm can
produce high-quality bbp(λ), aph(λ), adg(λ), and at(λ) for both
offshore open ocean waters and turbid coastal waters. To fur-
ther evaluate the applicability of the NIR-QAA combined IOP
algorithm for the global ocean, China’s east coastal region, the
US east coastal region, and the Mississippi River Estuary region
are selected to evaluate IOPs of bbp(λ), at(λ), adg(λ), and aph(λ)
using the NIR-QAA combined IOP algorithm.

The climatology bbp(λ), aph(λ), adg(λ), and at(λ) from the com-
bined IOP algorithm in China’s east coastal region at the VIIRS-
SNPP bands of 443, 551, and 671 nm are also derived (Fig. 8).
China’s east coastal regions feature a high loading of sediment
concentration (Shi and Wang 2010, 2012) such as in the regions
of the Hangzhou Bay, Yangtze River Estuary, and Subei Shoal in
the continental shelf (Milliman and Meade 1983; Milliman et al.
1985). In fact, TSM concentrations can reach over 1000 g m−3 in
some regions (Shen et al. 2010b; Zhang et al. 2010a). Farther off-
shore, the ocean is featured with clear open ocean waters with
Kuroshio Current flowing from the southwest direction to the
northeast direction. The CDOM absorption coefficient at the
wavelength of 400 nm aCDOM(400) ranges approximately from
greater than 1m−1 in the coastal region to near 0m−1 in the open
ocean (Gong 2004).

For all the products of bbp(λ), at(λ), adg(λ), and aph(λ), the noise
level is low for both coastal and offshore waters. bbp(λ) reaches
over ~ 2m−1 in highly turbid waters. In the Hangzhou Bay, Subei
Shoal, and Yangtze River Estuary enhanced adg(443) (Fig. 8c) and
at(443) (Fig. 8d) can be over ~ 4m−1

, while aph(443) (Fig. 8b) only
shows moderate increase in comparison to aph(443) in the open
ocean. This further suggests that high at(λ) in coastal waters is
attributed to the enhanced absorption of the dissolved and detri-
tal matter, which are driven by the river runoff and sediment
resuspensions in the Hangzhou Bay, Yangtze River Estuary, and
Subei Shoal. Phytoplankton bloom is not a major cause for the
features of enhanced at(λ) along China’s east coastal region. It is
also noted that at(671) in the open ocean is significantly higher
than the at(443) and at(551) because aw(671) is much larger than
aw(443) and aw(551). In the turbid China’s east coastal region,
bbp(λ) values generally become flat spectrally or slightly increase
from bbp(443) (Fig. 8a) to bbp(671) (Fig. 8i). This implies that the
power law exponential slope η of bbp(λ) is slightly negative or
close to 0 (Shi andWang 2014, 2017, 2019), and further suggests
that the particle size in the water column of the highly turbid
waters is generally larger than that of the other coastal regions.

Similarly, Fig. 9 shows the climatology bbp(λ), aph(λ), adg(λ),
and at(λ) in the Mississippi River Estuary and tributaries from
VIIRS-SNPP observations using the NIR-QAA combined IOP algo-
rithm. Even though the IOP features in this region are not as
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pronounced as in China’s east coastal region, enhanced adg(443)
(Fig. 9c) and at(443) (Fig. 9d) can still be observed in the Missis-
sippi River Estuary, Lake Pontchartrain, and Atchafalaya River
Estuary. Similar to China’s east coastal region, adg(λ) (Fig. 9c,g,k)
is the dominant component of at(λ) (Fig. 9d,h,l). However,
aph(443) in this region (Fig. 9b) is generally higher than aph(443)
in China’s east coastal region (Fig. 8b). Thus, its contribution to
at(443) in this region is not negligible. Higher aph(λ) in this region
also suggests that coastal and inland waters around the Missis-
sippi River Estuary and its tributaries are more productive than
China’s east coastal region and La Plata River Estuary, even
though the waters are less turbid than those two regions in terms
of bbp(λ) and nLw(λ) magnitudes (Shi andWang 2010, 2017). Dif-
ferent from the bbp(λ) spectra in turbid waters along China’s east
coastal region, bbp(λ) values generally decrease with the increase
of wavelength, e.g., from bbp(443) (Fig. 9a) to bbp(671) (Fig. 9i).
This shows that the power law exponential slope η for bbp(λ) is
positive in the Mississippi River Estuary, Lake Pontchartrain, and
Atchafalaya River Estuary, while it is negative in China’s east
coastal region (Shi andWang 2019). Since power law exponential

slope η of bbp(λ) is related to the particle size distribution slope ξ

in the water column (Kostadinov et al. 2009), the polynomial
relationship between η and ξ implies that the particle size in the
Mississippi River Estuary and tributaries is smaller than that in
China’s east coastal region (Shi andWang 2019).

Finally, climatology bbp(λ), aph(λ), adg(λ), and at(λ) derived
from theNIR-QAAcombined IOP algorithm in theUS east coastal
region are shown in Fig. 10. Similar to the other regions discussed
previously, these IOP products are in good quality with little
noise for both the open ocean and turbid coastal waters. In com-
parison to the La Plata River Estuary region (Figs. 4–7), China’s
east coastal region (Fig. 8), andMississippi River Estuary and trib-
utaries (Fig. 9), the US east coastal region is less turbid with mod-
erately high bbp(λ) in the Chesapeake Bay, Delaware Bay, and
Pamlico Sound. Highly turbid waters at the tips of the Chesa-
peake Bay, Delaware Bay, and Albemarle Sound with bbp(443)
over ~ 2m−1 can also be observed.

In the Chesapeake Bay and Delaware Bay, adg(443) and
aph(443) are in the same order. This is different from the other
highly turbid regions such as the La Plata River Estuary, China’s
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Fig. 8. VIIRS-measured climatology bbp(λ), aph(λ), adg(λ), and at(λ) in China’s east coastal region derived using the NIR-QAA combined IOP algorithm for
VIIRS bands at (a–d) 443 nm, (e–h) 551 nm, and (i–l) 671 nm.
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east coast region, and Mississippi River Estuary where adg(443) is
the dominant component in at(443). In the US east coastal
region, adg(443) (Fig. 10c) is also significantly higher than
aph(443) (Fig. 10b) in the Pamlico Sound. This indicates that river
runoff and sediment resuspension is themajor process that drives
adg(443) in the Pamlico Sound, while high productivity and phy-
toplankton bloom in the Chesapeake Bay and Delaware Bay can
lead to elevated aph(443). Climatology at(λ) images (Fig. 10d,h,l)
show that at(443) reaches over ~ 3 m−1 in these turbid areas.
Broadly enhanced at(λ) can also be found in most parts of the
Chesapeake Bay, Delaware Bay, and Pamlico Sound regions.

The IOP products in China’s east coastal region, the Mississippi
River Estuary, and the Chesapeake Bay as shown in Figs. 8–10 are
consistent with the observations from various studies in these
three regions (D’Sa et al. 2007; Werdell et al. 2009; Zhang et al.
2010b, 2012). In China’s east coastal region, the IOP values in
Fig. 8 qualitatively agree with the in situ measurements in the
region (Zhang et al. 2010b) and also specifically in Lake Taihu
(Zhang et al. 2012). In the Mississippi River Estuary, bbp(λ) slope
from the blue to red bands as indicated in Fig. 9 is similar to
the observations (D’Sa et al. 2007), and high adg(λ) and bbp(λ)
values are found in the Atchafalaya River Estuary since the sedi-
ment plume is trapped within the coastal current (Falcini et al.
2012). In the Chesapeake Bay, aph(λ) trends lower from the
upper Chesapeake Bay to the lower Chesapeake Bay as shown in
Fig. 10. This agrees with the observations of the spatial variation
of Chl a in the region (Werdell et al. 2009). On the other hand,
Tzortziou et al. (2006) show that measured and model-estimated

water-leaving radiances agree with each other very well in the
Chesapeake Bay. This further suggests that the IOP retrievals
from the bio-optical models as shown in this study are expected
tomatch well with the sea truth.

Discussion
nLw(λ) spectra are determined by the constituents of seawa-

ters such as CDOM, phytoplankton particles, inorganic min-
eral sediments, and so on. The specific spectral features of
each constituent such as absorption coefficients, e.g., aph(λ),
adg(λ), and at(λ), and backscattering coefficients, e.g., bbp(λ),
determine the spectral variability of nLw(λ) or remote-sensing
reflectance just beneath the surface rrs(λ).

Coastal waters with a diffuse attenuation coefficient
Kd(490) > 1 m−1 in the global ocean can account for about 1/7
of the global continental shelf (Shi and Wang 2010). Consid-
ering that coastal waters are often featured with complexity of
the seawater constituents as well as the dynamic variability, it
is critical to derive accurate IOP parameters in coastal waters
in order to study climatic, hydrological, physical, biological,
and biogeochemical processes and their interactions with each
other. From this point of view, the new NIR-QAA IOP algo-
rithm can broadly improve the global satellite IOP products in
the global continental shelf region instead of just some highly
turbid estuarine regions.

To derive all IOP parameters in the entire spectrum from the
blue to the NIR bands in coastal and inland waters, it is a

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

at(λ)adg(λ)aph(λ)bbp(λ)

bbp(λ), aph(λ), adg(λ), at(λ) (m–1)

Fig. 9. VIIRS-measured climatology bbp(λ), aph(λ), adg(λ), and at(λ) in the Mississippi River Estuary and tributaries derived using the NIR-QAA combined
IOP algorithm for VIIRS bands at (a–d) 443 nm, (e–h) 551 nm, and (i–l) 671 nm.
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prerequisite to compute bbp(λ) first. Even though the power law
of bbp(λ) has been widely used in the IOP modeling effort, it has
been typically a challenge to accurately estimate reference bbp(λ0)
and bbp(λ) power law exponential slope η directly with the ocean
reflectance in the visible bands. As shown previously, bbp(λ0) and
η in the QAA algorithm are computed using ocean reflectance in
the visible bands empirically (Lee et al. 2002; IOCCG 2006),
while η is set to a constant value in the GSM IOP algorithm
(Garver and Siegel 1997; Maritorena et al. 2002). Sensitivity stud-
ies have shown that η can significantly affect the accuracy of IOP
retrievals (Hoge and Lyon 1996). In addition, satellite-derived
nLw(λ) spectra in the visible bands become less-related or even
totally unrelated to the seawater constituent changes when
nLw(λ) at the NIR wavelength is over a certain value (Shi and
Wang 2009a, 2014; Shen et al. 2010a). This suggests that IOP
algorithms such as QAA and GSM using nLw(λ) at the visible
bands have some significant limitations in deriving accurate
water IOPs in turbid coastal and inlandwaters.

In comparison, the NIR-based IOP algorithm for turbid coastal
and inland waters in this study is essentially analytical since the

spectral features of the seawater constituents in the NIR wave-
lengths are used in this algorithm. Since it can compute the η

values directly, this algorithm can effectively address the large
variation of η values (Reynolds et al. 2001;Wozniak and Stramski
2004; Shi andWang 2017). Otherwise, the η variation can lead to
notable errors with empirical or semi-analytical IOP approaches.

A recent study (Shi and Wang 2017) has shown that the
NIR-based bbp(λ) algorithm can be applied to highly turbid
waters to derive reasonably accurate bbp(λ) in the visible and
NIR bands. It can be safely used for highly turbid waters with
nLw(745) and nLw(862) less than ~ 6 mW cm−2 μm−1 sr−1 and
~ 4 mW cm−2 μm−1 sr−1, respectively. The Hydrolight simula-
tions show that the NIR-based algorithm not only can be used
to derive bbp(λ) spectra, but also other IOP parameters such as
aph(λ) and adg(λ) with reasonably good accuracy over highly
turbid waters. On the other hand, atmospheric correction
uncertainty in the VIIRS NIR bands can be significant for
nLw(745) and nLw(862) in clear open ocean where their values
are close to 0. This determines that the NIR-based IOP algo-
rithm is not applicable in the open ocean.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

at(λ)adg(λ)aph(λ)bbp(λ)

bbp(λ), aph(λ), adg(λ), at(λ) (m–1)

Fig. 10. VIIRS-measured climatology bbp(λ), aph(λ), adg(λ), and at(λ) in US east coastal region derived using the NIR-QAA combined IOP algorithm for
VIIRS bands at (a–d) 443 nm, (e–h) 551 nm, and (i–l) 671 nm.
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To evaluate the performance of the VIIRS NIR-QAA com-
bined IOP retrievals, the in situ IOP data coincident with the
VIIRS measurements are required. However, some available
data sets such as Nechad et al. (2015) and Valente et al.
(2016) do not have the corresponding IOP measurements in
the VIIRS era from 2012. In addition, these data sets lack the
corresponding nLw(λ) data in the NIR wavelengths. Due to
the unavailability of the in situ bbp(λ) data in the turbid
waters, and also the low diversity and high uncertainty of
the in situ bbp(λ), aph(λ), and adg(λ) measurements, we used
the expanded IOCCG data set to evaluate the performance
of the NIR-based, QAA-based, and NIR-QAA combined IOP
algorithms. The expanded IOCCG data set covers a variety of
water types from the open ocean to coastal productive and
turbid waters. The diversity of water types in the Hydrolight
simulations is necessary in order to evaluate the performance
of these IOP algorithms for global ocean applications. It
avoids the limitation of using the in situ data which may be
more suitable for developing a regional IOP algorithm, but is
not diversified enough to cover various water types in order
to develop a generic IOP algorithm applicable for the global
ocean. The good performance of the NIR-QAA combined
algorithm in the Hydrolight data set provides the evidence
that the new combined IOP algorithm can be applied to sat-
ellite ocean color observations for deriving IOP parameters
for the global ocean.

In addition, the uncertainty and biases might exist for IOP
retrievals from the NIR-QAA algorithm from the global VIIRS
observations. This can largely come from the complexity of
the coastal waters in terms of the IOP spectral features even
though bbp(λ) power law exponential slope η can be well
quantified and characterized with the bbp(λ) at the NIR
745 and 862 nm. In this study, dynamic spectral shapes of
aph(λ) and adg(λ) are characterized with the empirical formulas
for aph(410)/aph(443) and adg(410)/adg(443) following the
same approach in the QAA IOP algorithm. These two empiri-
cal formulas are derived from the IOCCG IOP test data set
(IOCCG 2006), which is dominated with the clear open ocean
and less turbid coastal waters. Thus, cautions of possible
uncertainties and biases should be given when the NIR-QAA
combined IOP algorithm is applied to various coastal waters
especially highly turbid waters. In situ IOP measurements
might be necessary in order to further tune the coefficients
and develop a regional IOP algorithm to produce regional-
specific high-quality IOP products from satellite ocean color
observations.

Summary
In this study, we developed a NIR-QAA combined IOP algo-

rithm for global ocean applications. The NIR-based IOP algo-
rithm is based on the fact that the water absorption coefficients
aw(λ) at the NIR wavelengths are generally much larger than
other absorption components. The NIR-based IOP algorithm is

assessed and compared with the QAA-based IOP algorithm using
the Hydrolight simulated data, showing that the NIR-based algo-
rithm produces significantly improved IOP data over turbid
coastal and inlandwaters.

The advantages of the NIR-based and QAA-based algo-
rithms are also addressed and evaluated. A combination of the
NIR-based and QAA-based algorithms has been proposed and
demonstrated. We used the La Plata River Estuary as an exam-
ple to show the performance for IOPs of bbp(λ), aph(λ), adg(λ),
and at(λ) retrievals with the NIR-based, QAA-based, and NIR-
QAA combined IOP algorithms. The NIR-QAA combined algo-
rithm for bbp(λ), aph(λ), adg(λ), and at(λ) in the La Plata River
Estuary region shows that high-quality IOP products of bbp(λ)
aph(λ), adg(λ), and at(λ) can be produced for both the open
ocean and turbid coastal/inland waters.

Using the NIR-QAA combined IOP algorithm, we also pro-
duce the IOP products of bbp(λ), aph(λ), adg(λ), and at(λ) in
China’s east coastal region, the US east coastal region, and the
region of Mississippi River Estuary and tributaries with VIIRS-
SNPP observations between 2012 and 2017. VIIRS-SNPP IOP
results demonstrate that the NIR-QAA combined IOP algo-
rithm can be used to routinely generate high-quality opera-
tional IOP products for the global ocean from satellite ocean
color observations.
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